Key Concept Checklist✅

ConceptKey Technologies/SkillsResourcesPriority
1. Data Engineering FundamentalsETL Pipelines (Extract, Transform, Load)**: Building ETL pipelinesPython, SQL, Apache Airflow, Data FactoryHigh
Data Warehousing: Columnar storage, optimizing for analyticsAmazon Redshift, Google BigQuery, Azure SynapseHigh
Batch vs. Real-Time Processing: Understanding when to use batch vs. real-timeApache Spark, Apache Kafka, AWS Glue, DataflowMedium
Data Integration: Integrating various data sources (APIs, databases, streaming)Python, Apache Kafka, APIsHigh
2. Programming SkillsPython: Core programming languagePython (libraries like Pandas, NumPy, PySpark)High
SQL: Querying and manipulating dataMySQL, PostgreSQL, SQL Server, SQLiteHigh
Other Languages (Java, Scala): Beneficial for distributed systemsJava, Scala, SparkMedium
3. Big Data TechnologiesApache Hadoop: Framework for large dataset storage and processingHadoop, HDFSMedium
Apache Spark: Distributed data processingApache Spark, DatabricksHigh
Apache Kafka: Real-time data streamingApache KafkaHigh
Apache Flink: Real-time data processingApache FlinkLow
4. Data Storage TechnologiesRelational Databases: Structured data storageMySQL, PostgreSQL, SQL ServerHigh
NoSQL Databases: Semi-structured/unstructured dataMongoDB, Cassandra, RedisMedium
Data Lakes: Raw data storage for big dataAWS S3, Azure Data Lake, Google Cloud StorageHigh
Columnar Databases: Optimized for analytical queriesAmazon Redshift, Google BigQuery, Azure SynapseHigh
5. Cloud Computing & PlatformsCloud Providers: AWS, Azure, GCPAWS, Azure, GCPHigh
Data Engineering Services on the Cloud: ETL and data processingAzure Data Factory, AWS Glue, Google DataflowHigh
Containers & Orchestration: For deploying servicesDocker, KubernetesMedium
6. Data Processing FrameworksApache Spark: Large-scale data processingApache Spark, DatabricksHigh
MapReduce: Hadoop processing modelHadoop, Apache SparkMedium
Airflow: Orchestrating data workflowsApache AirflowHigh
7. Data Transformation & ModelingETL Processes: Extract, transform, and load processesPython (Pandas), SparkHigh
Data Cleansing: Handling missing data, outliers, and inconsistenciesPython (Pandas, NumPy)High
Data Enrichment: Enhancing data with additional contextSQL, Python, Data Integration toolsMedium
Dimensional Modeling: Building data models for analytical queries (star/snowflake schema)SQL, Dimensional modeling conceptsLow
8. Business Intelligence (BI) & VisualizationBI Tools: Building dashboards and reportsPower BI, Tableau, LookerMedium
KPI Identification: Understanding KPIs for business decision-makingPower BI, Tableau, business analysisMedium
9. DevOps & AutomationCI/CD: Automating data pipeline deploymentJenkins, GitLab CI, GitHub ActionsMedium
Infrastructure as Code: Automating cloud infrastructure setupTerraform, AWS CloudFormationMedium
Monitoring & Logging: Ensuring the health of pipelinesPrometheus, Grafana, AWS CloudWatchMedium
10. Data Governance & SecurityData Governance: Managing data availability and usabilityAzure Data Lake, AWS S3Medium
Data Privacy & Compliance: Ensuring data protection and legal complianceGDPR, HIPAAMedium
Security Best Practices: Encrypting and securing dataEncryption, AWS IAM, Azure SecurityHigh
11. Machine Learning (Optional but Useful)Basic ML Concepts: Understanding integration into data pipelinesScikit-learn, TensorFlow, PyTorchLow
Model Deployment: Deploying models for real-time predictionsFlask, Docker, KubernetesLow